1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| from PIL import Image import torch from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from modelscope import snapshot_download
model_dir = "/mnt/workspace/Qwen2-VL-2B-Instruct" min_pixels = 256*28*28 max_pixels = 1280*28*28
model = Qwen2VLForConditionalGeneration.from_pretrained( model_dir, device_map="auto", torch_dtype = torch.float16 )
processor = AutoProcessor.from_pretrained( model_dir, min_pixels=min_pixels, max_pixels=max_pixels )
messages = [ { "role": "user", "content": [ {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"}, {"type": "text", "text": "Describe this image."} ] } ]
text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to('cuda')
generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ]
output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )
print(output_text)
|